(x+6)=(x^2-7x+12)

Simple and best practice solution for (x+6)=(x^2-7x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+6)=(x^2-7x+12) equation:



(x+6)=(x^2-7x+12)
We move all terms to the left:
(x+6)-((x^2-7x+12))=0
We get rid of parentheses
x-((x^2-7x+12))+6=0
We calculate terms in parentheses: -((x^2-7x+12)), so:
(x^2-7x+12)
We get rid of parentheses
x^2-7x+12
Back to the equation:
-(x^2-7x+12)
We get rid of parentheses
-x^2+x+7x-12+6=0
We add all the numbers together, and all the variables
-1x^2+8x-6=0
a = -1; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·(-1)·(-6)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*-1}=\frac{-8-2\sqrt{10}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*-1}=\frac{-8+2\sqrt{10}}{-2} $

See similar equations:

| -9v-15=-5(v+7) | | 5(x-1)=-7x+7 | | (3-3i)+(7+4i)=0 | | -8w-40=8(w-1) | | -6(-5+4k)=-1+7k | | 2X2-9x-2=0 | | y/7+2=-1 | | 3x2+8=29 | | -8(u+5)=6u-12 | | -(7z+10)+(-87+4)=(-z+7)-(67-11) | | 5x-24=-6(x-7) | | -6=4(u-5)+3u | | 4(5x+1)=1/2(20x+6)+6 | | -3=-7y+4(y+3) | | 3e-e=3e-e | | 7i-(15-8i)=0 | | n/7+74=82 | | n/7+ 74=82 | | 7x+17+3x+13=90 | | 3(X-6)-(-5X+1)=2(x+3)+5 | | 2(g+4(=-8 | | 1(x-10)=49 | | 7x+17=3x+13 | | 3(x-6)-(-5X+1)=2(x+3)+5( | | (4-7i)(6-8i)=0 | | –21=9+–5w | | 4=7/9+u | | 4=-7/9+u | | –5+4u=–21 | | 4x^2-30x-117=0 | | 13−2j=11 | | 10x+50=14 |

Equations solver categories